1,493 research outputs found

    Multi-modal Image Processing based on Coupled Dictionary Learning

    Get PDF
    In real-world scenarios, many data processing problems often involve heterogeneous images associated with different imaging modalities. Since these multimodal images originate from the same phenomenon, it is realistic to assume that they share common attributes or characteristics. In this paper, we propose a multi-modal image processing framework based on coupled dictionary learning to capture similarities and disparities between different image modalities. In particular, our framework can capture favorable structure similarities across different image modalities such as edges, corners, and other elementary primitives in a learned sparse transform domain, instead of the original pixel domain, that can be used to improve a number of image processing tasks such as denoising, inpainting, or super-resolution. Practical experiments demonstrate that incorporating multimodal information using our framework brings notable benefits.Comment: SPAWC 2018, 19th IEEE International Workshop On Signal Processing Advances In Wireless Communication

    Asymptotic Task-Based Quantization with Application to Massive MIMO

    Get PDF
    Quantizers take part in nearly every digital signal processing system which operates on physical signals. They are commonly designed to accurately represent the underlying signal, regardless of the specific task to be performed on the quantized data. In systems working with high-dimensional signals, such as massive multiple-input multiple-output (MIMO) systems, it is beneficial to utilize low-resolution quantizers, due to cost, power, and memory constraints. In this work we study quantization of high-dimensional inputs, aiming at improving performance under resolution constraints by accounting for the system task in the quantizers design. We focus on the task of recovering a desired signal statistically related to the high-dimensional input, and analyze two quantization approaches: We first consider vector quantization, which is typically computationally infeasible, and characterize the optimal performance achievable with this approach. Next, we focus on practical systems which utilize hardware-limited scalar uniform analog-to-digital converters (ADCs), and design a task-based quantizer under this model. The resulting system accounts for the task by linearly combining the observed signal into a lower dimension prior to quantization. We then apply our proposed technique to channel estimation in massive MIMO networks. Our results demonstrate that a system utilizing low-resolution scalar ADCs can approach the optimal channel estimation performance by properly accounting for the task in the system design

    Compressive Classification

    Full text link
    This paper derives fundamental limits associated with compressive classification of Gaussian mixture source models. In particular, we offer an asymptotic characterization of the behavior of the (upper bound to the) misclassification probability associated with the optimal Maximum-A-Posteriori (MAP) classifier that depends on quantities that are dual to the concepts of diversity gain and coding gain in multi-antenna communications. The diversity, which is shown to determine the rate at which the probability of misclassification decays in the low noise regime, is shown to depend on the geometry of the source, the geometry of the measurement system and their interplay. The measurement gain, which represents the counterpart of the coding gain, is also shown to depend on geometrical quantities. It is argued that the diversity order and the measurement gain also offer an optimization criterion to perform dictionary learning for compressive classification applications.Comment: 5 pages, 3 figures, submitted to the 2013 IEEE International Symposium on Information Theory (ISIT 2013

    Mismatch in the Classification of Linear Subspaces: Sufficient Conditions for Reliable Classification

    Get PDF
    This paper considers the classification of linear subspaces with mismatched classifiers. In particular, we assume a model where one observes signals in the presence of isotropic Gaussian noise and the distribution of the signals conditioned on a given class is Gaussian with a zero mean and a low-rank covariance matrix. We also assume that the classifier knows only a mismatched version of the parameters of input distribution in lieu of the true parameters. By constructing an asymptotic low-noise expansion of an upper bound to the error probability of such a mismatched classifier, we provide sufficient conditions for reliable classification in the low-noise regime that are able to sharply predict the absence of a classification error floor. Such conditions are a function of the geometry of the true signal distribution, the geometry of the mismatched signal distributions as well as the interplay between such geometries, namely, the principal angles and the overlap between the true and the mismatched signal subspaces. Numerical results demonstrate that our conditions for reliable classification can sharply predict the behavior of a mismatched classifier both with synthetic data and in a motion segmentation and a hand-written digit classification applications.Comment: 17 pages, 7 figures, submitted to IEEE Transactions on Signal Processin
    • …
    corecore